

Mobility independence for all

#### **Table of Contents**

Opprotunity Map

**Preliminary Concepts** 

| User Journey                   | <del>4</del> 5 |                                               |          |
|--------------------------------|----------------|-----------------------------------------------|----------|
| Personas                       | 41<br>45       | Impact                                        | 93       |
| Target Audience & Our Goal     | 39             | ADA Compliancy                                | 92       |
|                                |                | Brading                                       | 91       |
| Affinitization & HMW           | 37             | Product Shots                                 | 89       |
| Define                         | 35             | Core Features - App<br>Core Features - Device | 85<br>87 |
| Competitive Analysis           | 33             | Final Concept                                 | 83       |
| Research Insights              | 21             | Deliver                                       | 01       |
| Research questions and methods | 19             | Deliver                                       | 81       |
| Initial Research               | 15             | Beta                                          | 77       |
| Prompt & Area of Interest      | 13             | App Mid-Fi                                    | 75       |
| Discover                       | 11             | User Testings<br>Alpha                        | 69<br>73 |
| Project Timeline               | 09             | App Lofi & Site map                           | 67       |
| Our Team                       | 07             | Physical Lofi Prototype                       | 65       |
| Look Book                      | 05             | Arduino Schematic & Test                      | 61       |
| Executive Summary              | 03             | Chosen Concept                                | 59       |

# MOMENT



#### **PROBLEM**

People who are visually impaired struggle to quickly adapt to **vast and drastic environmental changes** that disturb their mental maps.

#### SOLUTION

Moment is a haptic device that assists with **on-the-spot decision making for individuals** with visual impairment.

Moment provides directional cues when users are faced with an environmental obstacle in their path.

#### **KEY FEATURES**

#### **OPTIMIZED WAYFINDING**

Save routes and creates custom commutes between multiple frequently visited locations to alleviate the stress of prepatory stages

#### **HAPTIC ALERTS**

Haptic cues for on the spot unexpected obstacles gets rid of anxiety and aids with better navigation to destinations.

#### **PERSONALIZE**

Customize general accessibility settings as well as haptic alerts for your moment device to change it to fit to your needs

#### **PIN ALERTS**

A system where pins can be placed on route and commutes for more confident commute and better locational awareness.





#### Our Team



**Yeji Han**Project Manager



**Edie Alvarado** Research + Prototyping



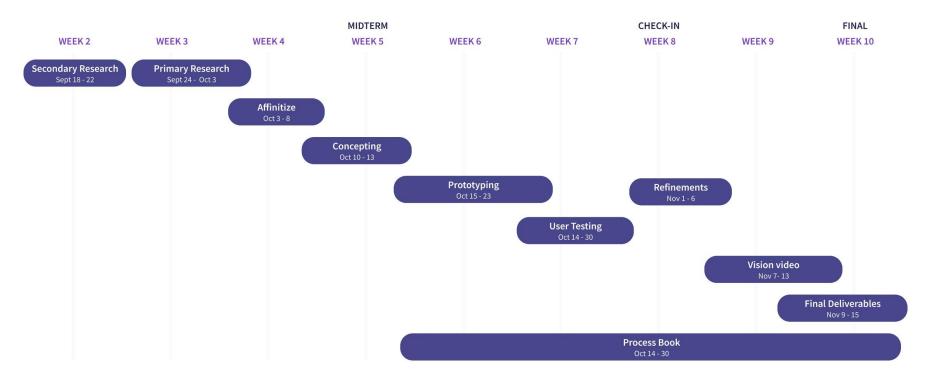
Andrew Goodridge
Prototyping + Visual
Designer



**Zachra Pradipta**Prototyping + Visual
Designer



Andrea Guth
Visual Designer




**Erin Mills**Product Designer





#### **Project Roadmap**



# 101. Discover

# Create something that was not possible six months ago

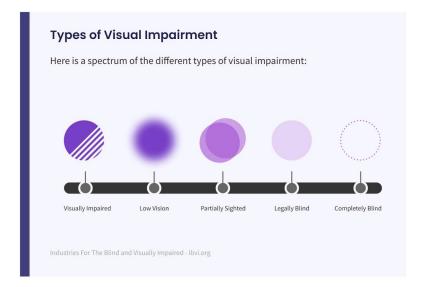
To start off the project, we looked closely into the prompt that was given to us, and we asked ourselves...

What has happened in the last six months?

What are the things that hasn't been put into attention six months ago and now?

What is happening now that didn't happen six months ago?

Who is being affected by the events happening in the past six months?


# Events impacting the visually impaired

We realized that due to the vast environmental changes because of recent safety regulations, many aspects of society such as public spaces disproportionally affect those who are visually impaired. Our focus was specifically on how these changes affected mental maps for the visually impaired.



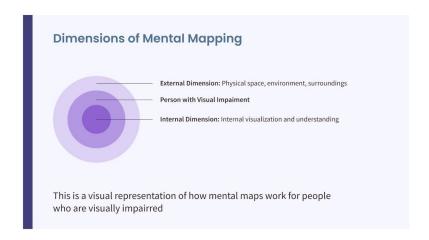
#### **What is Visual Impairment?**

Visual Impairment (VI) is a decrease in the ability to see to a certain degree that aren't typically fixable by traditional means such as contacts or glasses. Visual impairment may include a loss of visual acuity, loss of visual field, photophobia(inability to look at light), diplopia(double vision), visual distortion, or a combination of those features.



**CURRENT SITUATION** 

#### **COVID-19 Impact**


The vast changes of physical spaces due to COVID-19 guidelines may disrupt existing mental maps.

According to the RNIB, two-thirds of visually impaired individuals feel they have become less independent since the start of lock down.

Industries For The Blind and Visually Impaired - ibvi.org

#### **Mental Maps**

A type of mental representation that helps an individual to decode the physical attributes of a spatial environment.



People who are visually impaired need a seamless transition and experience that allows a minimal disrupted commute.

#### **Neuroplasticity**

Neuroplasticity is the ability of the brain to form and reorganize synaptic connections, especially in response to learning or experience.

This ability is engaged when an experience requires an adaptation, often when an integral part of the senses is missing.

#### **Neuroplasticity in VI people**

Cross-neuroplasticity has been associated with the visual brain areas recruitment during the sound and auditory processing.

Research has reported superior performance in VI in a variety of sensory and cognitive processing tasks that include hearing, touch, and smell.Cross-neuroplasticity has been associated with the visual brain areas recruitment during the sound and auditory processing.

# Vast changing environments that impact mental maps for the visually impaired

THE PROBLEM

People who are visually impaired struggle to quickly adapt to vast and new environmental changes

#### EXPECTED OUTCOME

To facilitate the independence of indivisuals who are visually impaired in public environments.

To design and create an adaptive solution that evolves with the users' needs throughout new and changing experiences and environments,

#### RESEARCH METHODS

In order to understand the problem area, it was important to do primary and secondary research that will help bring us perspective and key insights, here are some research methods we used:

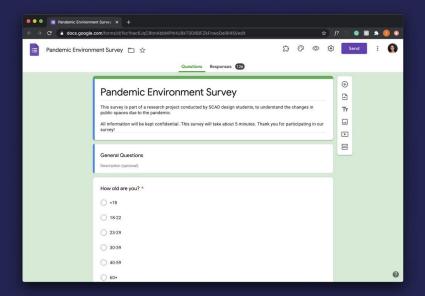
#### Secondary Research (far and wide)

Validate the problem area with a wide user group (and possibly outside of our user group) both quickly and efficiently, while also gaining a variety of different perspectives.

#### Survey

Validate the problem area with a wide user group (and possibly outside of our user group) both quickly and efficiently, while also gaining a variety of different perspectives.

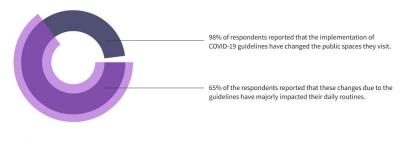
#### **Interviews**


Get first-hand reports of prior experiences to narrow pain points and see what the target market is currently thinking on the issue.

#### **Interviews**

Work to embrace a miltu-sensory experience; expert level opinion is needed to descern a feasible solution.

#### SURVEY


Through this method, we were aiming to collect quantitative data about differences in public environments since the start of the pandemic. This method's participants were not limited to our target audience since environment changes has impacted a wide variety of people.



Number of responses: 126

#### SURVEY INSIGHTS

# Regardless of who they are, the majority of respondents feel that changes due to COVID-19 has greatly impacted their routine.



However, respondents (58%) have reported that adjusting to these changes have been easy. Keep in mind that most of the respondents are sighted people.

## Most respondents are dependent on someone else for certain things

43% of respondents are dependent, 38% are independent, 16% are co-dependent.

Human dependency is seen to be common among people, regardless of their situation.

## Even during the pandemic, respondents still go out of their houses for various reasons.



The most common reasons for leaving the house is to run errands, exercise, to take a break, meeting friends, and meeting family.

#### Public spaces are considered the same or even less accessible compared to prior COVID-19 guidelines

Prior to the pandemic, public spaces are already considered as a middle-space of being somewhat accessible but not entirely.

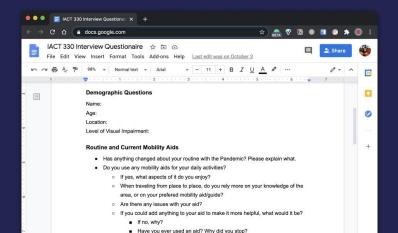
Since the pandemic, 37% of the respondents don't actually notice accesibility in public spaces, 36% feel that places are still the same, and 23% reported that public spaces have become less accessible.

# Products that are helpful for people with disability is often a byproduct rather than an enhancement

"Intuitive signs on the floor or the notice on the wall can be helpful for the people with disability but it was not an intended enhancement. It was rather a byproduct. Authorities can be and should be much more conscious of the people with disability using the crisis as an opportunity."

Goals: Get first-hand reports of prior experiences to narrow pinpoints and see what the target market is currently thinking on the issue.




#### Renee VanDoren

Mainly Blind



#### **Jose Ignacio**

**Totally Blind** 



#### Current mobility aids do not account for on-the-spot problem solving.

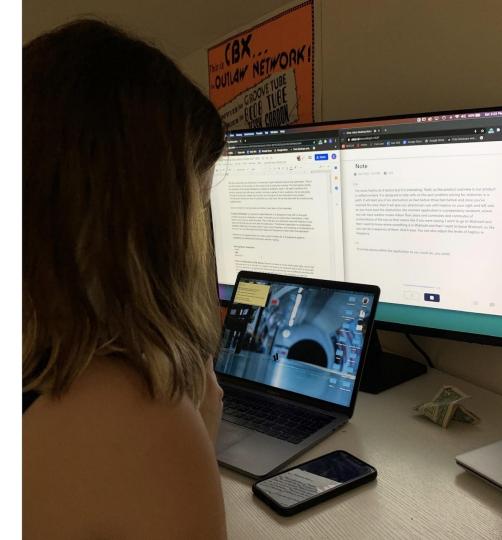
"If i can follow a shoreline with my cane, I'll follow that, but its not always the case" - P2

"When my guide dog and I are faced with a momentary obstacle I have to try and understand the alternative route and then I try to figure out how I might get around it. Which way do I walk? How do I get around?"

"Sometimes I have to rely on outside people to guide me in the right direction but it makes me nervous." - P1

#### Due to tactile limitations, VI participants feel a decrease in independence when away from sighted guides.

"I do not go shopping unless someone is with me to assist during the pandemic" - P1


"There are marks on the floors where you stand in line but I cant see them or train my dog around them so I just avoid it." -P1

# Individuals who are VI place a large emphasis on preparatory routines prior to leaving the house.

"I will practice the route before I get to a new place. I need an opportunity to get comfortable with the environment." - P1

"If I can, I will find the floor plan to get an idea of the room and general space." - P1  $\,$ 

"Typically for the first time [in a new envirnoment] I go with someone. In the case of SCAD, my mom and I went beforehand and she guided me around the campus so I can memorize." -P2



#### **EXPERT INTERVIEWS**

**Goals:** To understand how business owners have changed their spaces due to the pandemic and how take accessibility for those who are visually impaired into mind for their space.



#### Ava

General Manager Starland Yard

**Goals:** Gain a better understanding of how changes in environment affect those who are visually impaired and current accessibility best practices to ensure our solution's success



#### Jen

Head of Acessible UX at Google



#### Johan

Inclusivity consultant at Google



# Accessible design is achieved by working with a specific group or individual with that said disability.

"The best way to design for accessibility is to be able to design with a group or someone with the disability." - Ava (Starland Yard Manager)

"I start with a specific group to design for and over time, encompass many other groups who might benefit from a solution." - Johan (Inclusivity Consultant)

#### **Expert Insights**

After talking to our experts Ava, Jen, and Johan we learned about the importance of inclusive design. So going ahead of our project we wanted to clearly understand and identify our target audience and keep inclusivity in the back of our minds.

"The best way to design for accessibility is to be able to design with a group or someone with the disability"

-Ava

"I start with a specific group to design for and over time, encompass many other groups who might benefit from a solution" -Johan (Inclusivity Consultant) Accessibility Inclusivity

#### **CURRENT MOBILITY AIDS**

The main takeaway from our research on current mobility aids prove that they do not account for on-the-spot problem solving entirely. For example, guide dogs don't react to color or texture contrast. Another reserach we found is that most people who are visually impaired don't use a white cane. In fact, only an estimated 2% to 8% do.



**Guide Dogs** 



**Sighted Guide** 



White Cane



**Electronic Mobility Aids** 

INITIAL RESEARCH

#### **Sonar Glasses**



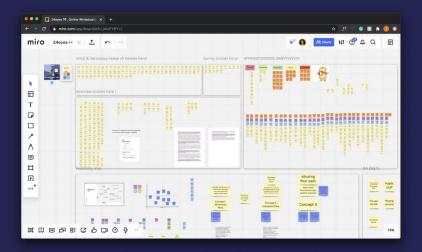
Sonar Glasses are smart glasses with a sonar sensor to detect obstacles in front of the user. Some impressive features of this product is that it reduces sun glare as well as detects obstacles. Its also a relatively good hands-free solution for those who are visually impaired. That being said, there is no haptic feedback, as it only includes audio feedback, which makes it distracting to others.

#### **Eyeronman**



Eyeronman is a vest retrofitted with both spatial sensors and haptic motors to detect obstacles for visually impairred users. It has dynamic tactile feedback and also doesn't impact hearing which is a plus, but it is unfortunately a very bulky, two part system. Its main use is for first responders and industrial use.

#### WeWalk




WeWalk is a smart cane which detects obstacles and notifies you of them. It comes with a companion app which helps you find walkable routes. Some faults of it is that the user still needs to carry a white cane around and the sensor itself is partially redundant.

102. Define

#### AFFINITIZATION

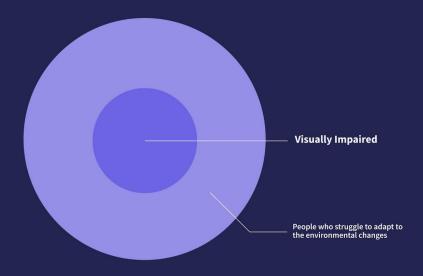
Our affinitization process started with around 230 raw yellow data points where we narrowed down to 32 most relevant and important findings. With the synthesized 32 data points we organized it into Super relevant, relevant, and not so relevant categories to guide us to creating powerful insights and HMW questions to guide our design process further on.



#### **CORE INSIGHTS**

#### **Momentary Decision Making**

Current mobility aids do not account for on-the-spot problem solving


#### **Supplementary Sensory Inputs**

Due to tactile limitations, VI participants feel a decrease in indepeendence away from sighted guides

#### **Environment Preparation**

Individuals who are VI place a large emphasis on preparatorrry routines prior to leaving the house.

TARGET AUDIENCE OUR GOAL



#### **Defining our Target Audience**

The visually impaired is our focus tarrget audience. But we are keeping in mind to have our design as something that is inclusive to other users that also share these navigational or changes/adaptation pain points.

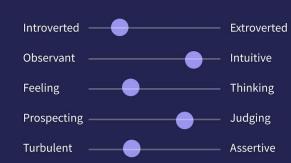
Facilitate the independence of individuals who are visually impaired in public environments by developing an adaptive solution that evolves with the users needs throughout new and changing experiences.

**Iris Stein** 



Chicago








Social Worker

Iris is a social worker at the Medical Children's Center in Chicago. She is born sighted however has been visually impaired for now 5 years. Iris recently got a guide dog named Magician which has help her a lot with navigating especially her commute. However the pandemic has been a great struggle for her as many changes have been made where Iris was completely unaware of.







"It is very fustrating dealing with unexpected obstacles on the way to work"

#### Frustrations/pain-points

- Struggles with unexpected obstacles
- Keeping the 6ft rule

#### Goals

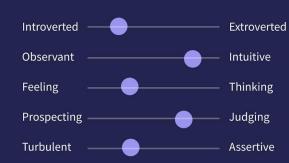
- Doesn't want to rely on her friends and family
- Wants to be more confident when traveling to new places



Atlanta

#### Mike Wilson

٩ 7


Alon

Retired

Mike is a retired senior living in the busy city of Atlanta. He lives alone in his apartment, and he considers himself to be highly independent. Even though he doesn't like to ask for help, he has been experiencing some issues when completing his routinely errands lately. Changes around the city have confused him, and caused several route incoveniences when leaving his house.

Because of this, he has leaned towards staying home, not allowing himself to complete several errands he usually needs.







"You shouldn't be surprised when I get lost. It happends a lot to me."

#### Frustrations/pain-points

- Relying on other to fullfill his daily commute
- Changes that throw him off his routine
- Not being able to leave his house confidently

#### Goals

- Remain independent
- Adapt better to chainges in his sorroundings

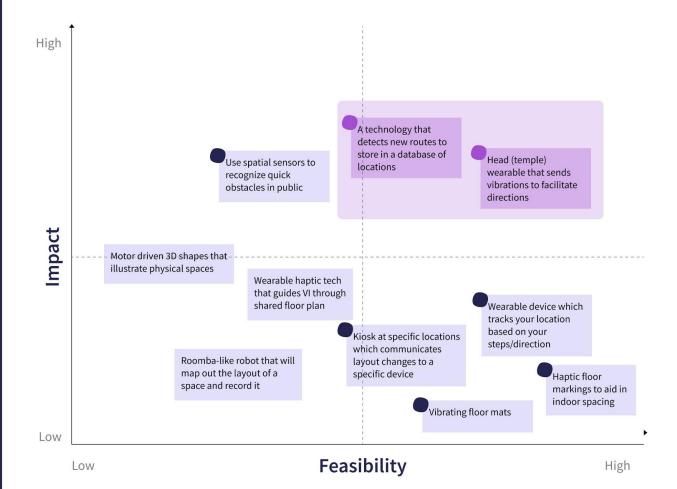
# **Journey Map**





103. Design

#### CONCEPTING


Our team met over a series of meetings to ideate several potetial concepts that allign with our insights and HMW questions. We used various methods such as the opprotunity map to evaluate the strengths and weaknesses of the different concepts created.



**FEASIBILITY MAP** 

#### **Mapping Our Ideas!**

We collated all of the conecpts we had and mapped them on a feasibility chart. We did this to identify the features which have the highest impact yet are feasible with our skillset and timeframe. We highlighted two concepts which excelled in both aspects and turned them into our two concepts.



## Moment

A wearable which helps VI users avoid momentary obstacles while walking in public.

Proximity sensors look for obstacles and sends a variety of dynamic haptic feedback to the user depending on the situation.

Comes with quick on/off switch, as well as a companion app which allows for settings to be fine-tuned to the users needs.



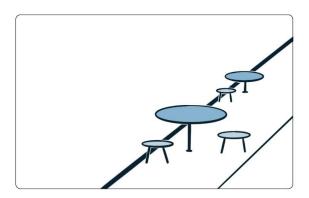


#### PARTS NEEDED

| Туре             | Product                                    | # |
|------------------|--------------------------------------------|---|
| MCU              | Adafruit Feather nRF52840 Express          | 1 |
| Battery          | Lithium Ion Polymer Battery - 3.7v 2500mAh | 1 |
| Haptic Driver    | Adafruit DRV2605L Haptic Motor Controller  | 2 |
| Haptic Motor     | Vibrating Mini Motor Disc                  | 4 |
| Proximity Sensor | US-100 Ultrasonic Distance Sensor          | 3 |
| On/off Button    | Tactile Switch Buttons(ID: 1119)           | 1 |

#### Concept 1 **Moment**

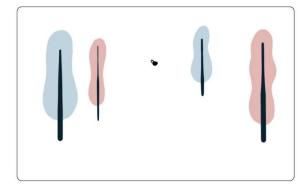
errands on her own.






Before leaving, she makes sure to to check Google Maps and prepare for her travels.




After memorizing the route to the grocery store, she leaves her house.



But due to new COVID guidelines, there are new outdoor seating arrangements that weren't specified in Google Maps.



With Moment, it notifies her beforehand to move over so she wouldn't clash with the new seating arrangements.



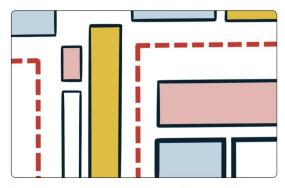
Iris walks confidently around her area knowing that Moment will notify her for any obstacles she isn't aware of.

# Path\_

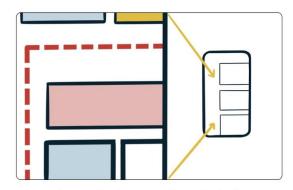
A wearable which helps VI users prepare for routes which have drastic changes to them.

Keeps track of routes you take routinely and collates the community's paths together to find patterns and irregularities.

Companion app helps users plan and discover new routes, as well as notifying when there are possible obstructions in the way of a recognized path before you leave.




#### PARTS NEEDED


| Туре             | Product                                    | # |
|------------------|--------------------------------------------|---|
| MCU              | Adafruit Feather nRF52840 Express          | 1 |
| Battery          | Lithium Ion Polymer Battery - 3.7v 2500mAh | 1 |
| Haptic Driver    | Adafruit DRV2605L Haptic Motor Controller  | 2 |
| Haptic Motor     | Vibrating Mini Motor Disc                  | 4 |
| Proximity Sensor | US-100 Ultrasonic Distance Sensor          | 3 |
| On/off Button    | Tactile Switch Buttons(ID: 1119)           | 1 |

#### Concept 2 Path

Iris walks to work from her house on the same route everyday.



She's been tracked and given basic directional cues on her daily path.



Her path is uploaded to a shared platform and she can view other users' routes to different locations.



One day, before going to work, Iris is notified that there is a new construction on her regular path.

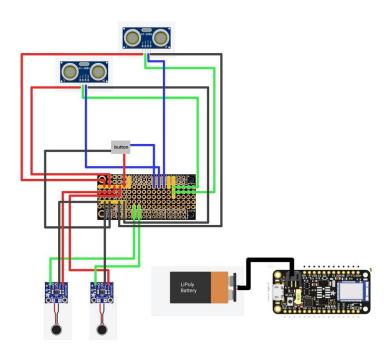


As she is preparing to leave, she is given an alternative route that she can take.



She can now leave the house prepared and can follow the basic directional cues along her new route.

# Moment + Path


After running it through our participants and getting feedback on both of our concepts, we landed on a merged and improved concept that tackled and alleviated their greater pain points and concerns.

Our newly explored concept was designed to accompany them through moments of transition, as well as prepare them for unexplored routes.

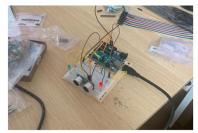
Through these features, our solution aims to diminish negative feelings that arise in situations where they are exposed to unknown environments providing them preparation tools, and guiding them in the moment through haptic feedback.

#### **Arduino Schematic**

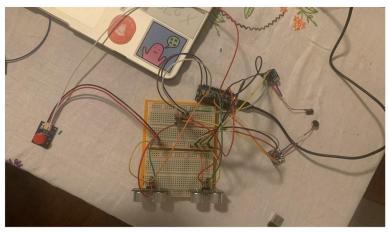
In order to define the required materiales and get a sense of the functionality of our product, we developed a schematic that could guide us through the building process. This included all the components and connections in order to understand the electronic aspect of it and start developing the casing.



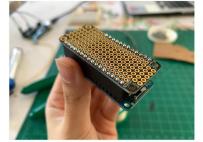
#### PROCESS


#### **Arduino Test**

Prior to our final prorotype of the Moment Device, We tested each individual parts to make sure of its functionality and capability.




#### **PROCESS**


Below are additional photographs of our team testing different parts. We also did a rapid prototype with the USB and bread board and confirmed that the device was properly fucntioning.







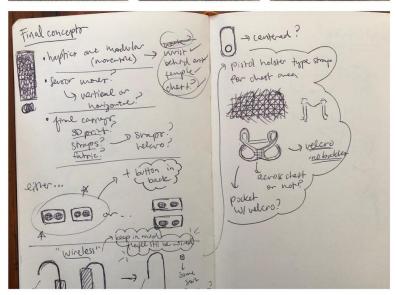






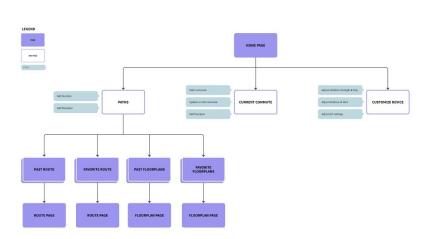
#### **Physical Build Design**

Since our product is a wearable device we wanted to conduct research and testings to find the most optimal shape for our users. Along with various sketches and quickly prototyped clay models we were able to narrow down the most effective shape.





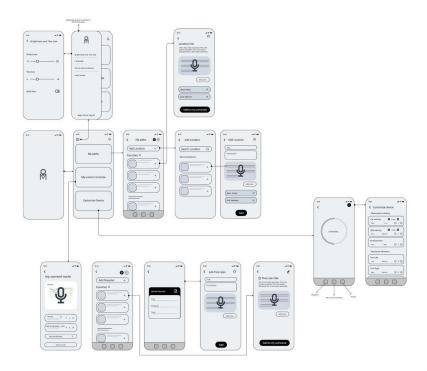







#### **App Site Map**


Along with creating the app Lo-fi screens our team built app site maps to have a more clear understanding of the information architecture within the app.



#### PROCESS

#### App Lo-fi

We wanted ensure that the app would meet the WCAG standards. With this, we focused on making our UX writing consistent, add aadditional settings for accessibility, and have clear organization of the information architecture.



#### Wizard of Oz

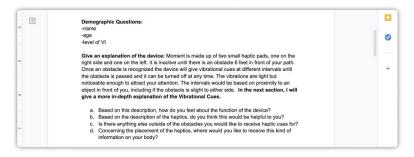
Given the situations of the pandemic, our team decided to use the Wizard of Oz techinque verbally through zoom. With this method we ran our participants through our physical and digital product.



#### Renee VanDoren

Mainly Blind Social Worker




#### Su Park

Light perception Accessibility Consultant



#### **Mark Melonson**

Light perception Senior App Security Engineer at HP



#### What worked W



- The location pins
- · General haptic functions and guide
- Enjoyed the additional alt text directions on the app
- · A nice secondary tool of navigation
- The customizable haptic experience

#### What needs improvement 99

- Understanding direction on location pins
- The range of the sensor
- · Users preferred wrists for haptic feedback
- · Haptics for indoors vs outdoors

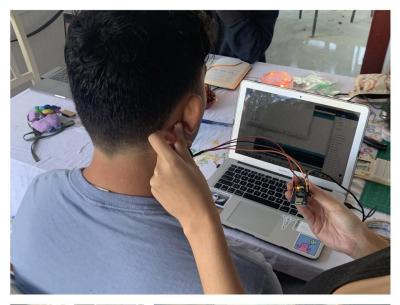
#### Possible Changes ?



- · A compass or more haptic cues to help understand orientation on location pins
- A different arrangement of ultrasonic sensors to cover more area
- Separate customization for indoor and outdoor haptics

**USER TEST** 

## Physical Build + Arduino


We tested our arduino haptic pads to several participants. Through these testings our goal was to understand preferences when it came to the location of the haptic cues on the body.

#### INSIGHTS

We learned that when it came to haptic vibrations the preference varied depending on the individual.

The vibrations from the haptics weren't strong enough for the users to notice.

Users feel that the haptic placement can be disruptive for some cases, it's hard to decide which placement is suitable for all situations.



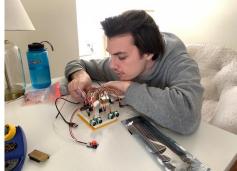




#### **PROTOTYPE**

## Alpha

For the first round of our complete prototype, we managed to put all the parts together and organize the wires so it could be used as a wearable. For this prototype, we did the big chunk of the soldering and testing the sensors. The main issue at this time was that our LiPo battery didn't work, so we had to temporarily replace it with a powerbank.

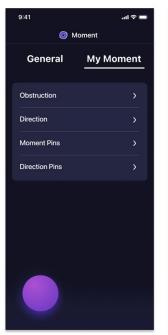


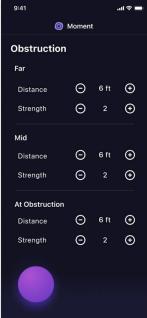










## **App Mid-Fi**

After our Wizard of Oz user testings, our team went through a pivot. We originally had a floorplan option to the app however got rid of this as we found that the idea didn't allign with our goals with the concept.











#### PROTOTYPE

## Beta

For the second round of our prototype, we placed the wires and parts into a fabric sleeve. The main challenges that we encountered during this time is a lot of the wires would fall off, so we had to resolder them, and we also had to figure out how to neatly put on the sleeve over the wires. But overall, the prototype still worked perfectly.








## Meetings, tests, and tears

After the Beta, we encountered some major issues with the connection of the wire. For a moment, our prototype broke and we realized it was because the solder from ground to power was leaking. But this last stretch to finalizing our product has led us to hours of soldering, hours of meetings, and hours or reassuring each other that everything will be okay.





















104. Deliver



## Moment.

A wearable which helps visually impaired users avoid **momentary obstacles** while walking in public.

Proximity sensors look for obstacles and sends a variety of dynamic haptic feedback to the user depending on the situation.

Comes with quick on/off switch, as well as a companion app which allows for fine-tuned product settings as well as pins to allow haptic alerts during their path.







#### **Current Commute**

ALT Text Directional Overview of Routes within commute

Modules of step by step directions make complex direction easy to understand

Edit and add destinations and Alert Pins while on a commute

## **Pinning Alert**

While creating Custom Commute you can add Aler Pins to highlight individual directional cues

Pins every ALT text direction for fully responsive Haptic GPS

Add pins throughout your commute for haptic cues along your way





# Saved Routes & Past Commutes

Save routes to add to your commute.

Get quick alt-text description for your routes.



### **Customize Moment**

Change general accessibility settings such as brightness and sizing display settings, ALT text speeds and contrast.

Customize the strength and distance of your haptic alerts.

Create specific haptic cues for your pinned alerts.

#### **CORE FEATURES — DEVICE**

Two proximity sensors which scan for obstacles around the user and notify them via haptic feedback

A quick-access on/off button to allow for seamless transitions to indoor/close-quarter environments.

Pinned directions can be turned on so that when the user approaches a specific direction on their commute, Moment can send haptic feedback to ensure the user is going in the right direction.



## **Haptic Language**

#### **Proximity directions:**

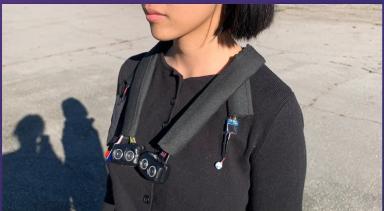
Sensors each correspond with the motor on their side, so if there is an obstacle on the left, the only the left haptic motor will go off. They can also go off simultaneously if theres an object in front of both sensors.

#### **Proximity: Far objects:**

Set default as 5.5ft away

• Moment will send one quick buzz every 700ms. This acts as a gentle reminder that there might be an obstacle in front of the user

#### **Proximity: Close objects:**


- Set default as 3ft away
- Moment will send two quick buzz every 700ms. This acts as a stern notice that there is an obstacle in close proximity to the user

#### **Pinned Directions:**

- Using the user's phone GPS, the phone is able to send quick alerts to the device on which direction the user should go at any given location on their commute
- Moment will send two long buzzes every 400ms depending on which direction the user should be moving to stay on route to their destination

#### PRODUCT SHOTS









APP ADA COMPLIANCY

**Text Contrast** 

Thumb-Zone

Navigation Menu

Ratio



# **MOMENT**

Mobility independence for all

## **Avenir Black**

Source Sans Pro SemiBold





#9B95EE



#232450





Responsive ALT Text to Speech **Curated to Current** Location

In-Depth Overview of Directional Cues and Route



14.58:1

LARGE TEXT @

✓ AA – 4.5:1 ✓ AAA - 7:1

✓ AA – 3:1 ✓ AAA – 4.5:1

Alleviate the pain of the prepatory steps going to a new location

Better navigate on the spot unexpected obstacles.

Provide confidence with wayfinding through precise haptic cues.

